

User-based application for the restoration of medieval frescoes

Rémi Orveau¹, Éric Desjardin²,
Nicolas Courilleau¹, Daniel Meneveaux¹

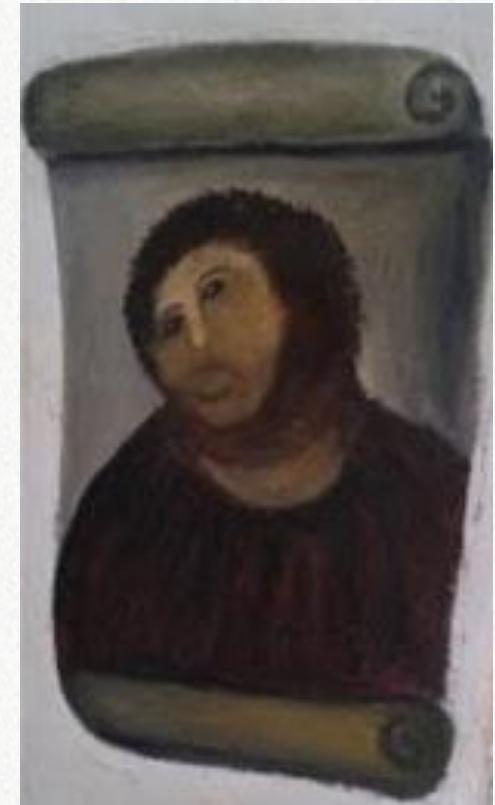
¹Université de Poitiers, CNRS, XLIM

²Université de Reims, CRESTIC

Plénière DIGITALIS


Juin 2025

Context

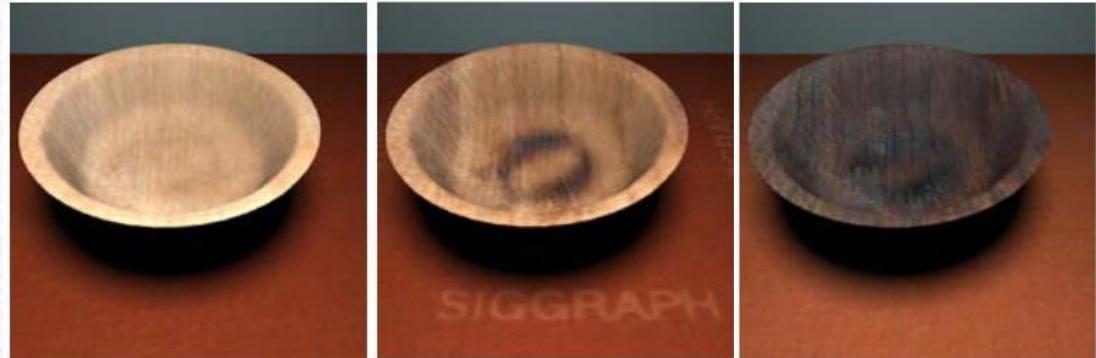

A painting of Elias Garcia Martinez , 1930.

The original painting

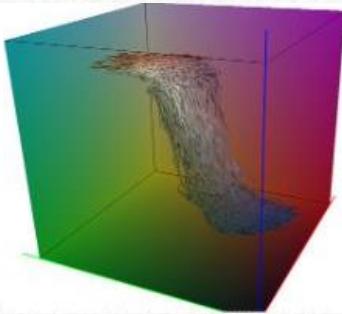
The painting restored by
an expert

The painting restored by
an amateur

A work on complex paintings



Fresco from the abbey of Saint Savin


State of the art

Physically-based weathering [1]

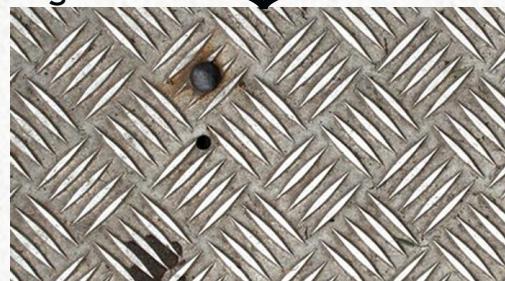
Data-driven weathering simulation [2]

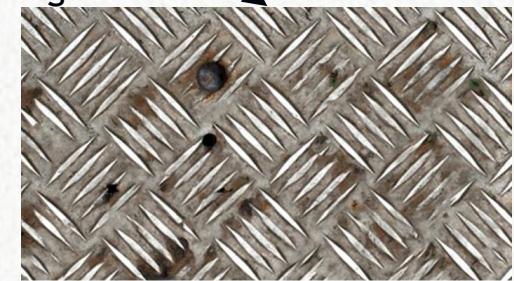
Manifold weathering simulation [3, 4]

2D weathering simulation [5, 6, 7]

State of the art - 2D

De-Weathering


Weathering


2D weathering simulation with a user input [5]

De-Weathering

Weathering

2D automatic weathering simulation [7]

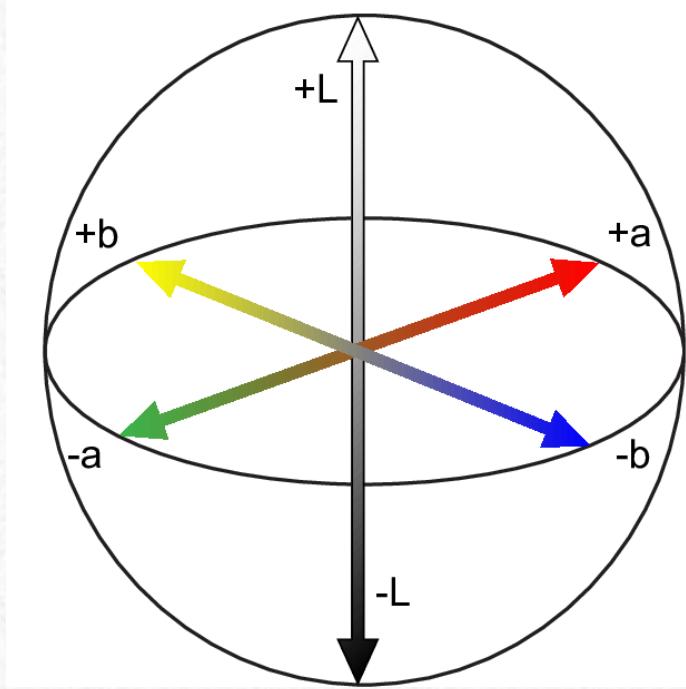
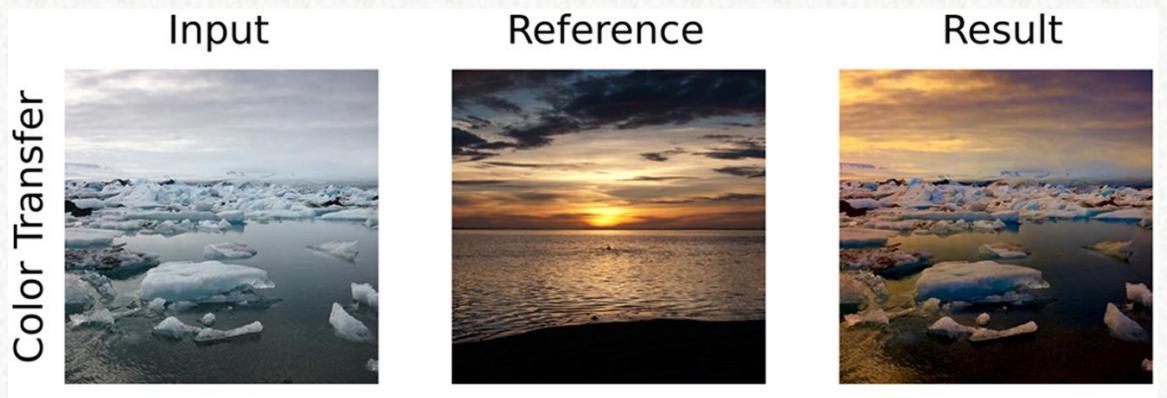
Restoration of simple textures

1.

2.

1. The original weathered area from the painting
2. Restoration with an artificial intelligence model specialized in inpainting

Restorer-guided restoration



Restorer-guided restoration -- Segmentation

Segmentation of a fresco with segment anything 2 [8]

Restorer-guided restoration - LAB color space

As explained in « Colour Spaces for Colour Transfer » [9] CIELab is the best color space to do a color transfer color

Restorer-guided restoration - color restoration

Restoration of the color

Restorer-guided restoration - Texture generation

Texture generation by example [10]

Restorer-guided restoration - Combination and errors

Interpolation

A mix between the original and the restored image

A map to interpolate the details of different color from the original image

Démo

A screenshot of a dark-themed IDE (Integrated Development Environment) showing a Python project named "user_guided_restoration". The main.py file is open and displays the following code:

```
File Edit Selection View Go Run Terminal Help
RUN AND DEBUG No Configurations ... main.py interface.py utils.py project.py segmentAnything.py __init__.py .gitignore
VARIABLES
WATCH
CALL STACK
Running
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
powershell Python Deb...
BREAKPOINTS
Raised Exceptions
Uncaught Exceptions
User Uncaught Exceptions
start_project_imgs* 0 0 0
Rémi Orveau (3 days ago) In 22, Col 38 Spaces: 4 UTF-8 CRLF Python 3.11.10 (These: conda)
```

```
1 #general
2 import os
3 import skimage
4 import tkinter as tk
5 import torch
6
7 #project import
8 from interface import RestorationViewerApp
9 from sam2.segmentAnything import SegmentAnything, SegmentAnything2
10 from project.project import Project
11 from customtkinter import ctk
12
13 os.environ['KMP_DUPLICATE_LIB_OK']=True
14
15 def main():
16     #launch SAM
17     if torch.cuda.is_available():
18         device = "cuda"
19         sam = SegmentAnything2(device)
20     else:
21         device = "cpu"
22         sam = SegmentAnything(device)
23
24     #launch restoration class
25     path_executable = os.getcwd() + "/texture_rendering/tiling.exe"
26     restore = Project(path_executable, device)
27
28     # Run the application
29     root = ctk.CTk()
30     app = RestorationViewerApp(root, sam, restore, device)
31     root.mainloop()
32
33     return 0
34
35 if __name__ == "__main__":
36     main()
```

Conclusion

Synthesis

- A method of restoration by texture generation and color propagation.
- An application that works with a few clicks

Perspective

- A map to mix the original image and the restored one
- A global restoration application on multiple images from a single project
- A switch between Segment Anything 1 and 2 to work on a CPU
- Publication to the Journal of Computing and Cultural Heritage JOCCH

Bibliography

1. Ishitobi, A., Nakayama, M., Fujishiro, I., 2023. Visual simulation of crack and bend generation in deteriorated films coated on metal objects: Combination of static fracture and position-based deformation
2. Gu, J., Tu, C.-I., Ramamoorthi, R., Belhumeur, P., Matusik, W., Nayar, S., 2006. Time-varying surface appearance: acquisition, modeling and rendering.
3. Wang, J., Tong, X., Lin, S., Pan, M., Wang, C., Guo, B., Shum, H.-Y., 2006. Appearance Manifolds for Modeling Time-Variant Appearance of Materials.
4. Xue, S., Wang, J., Tong, X., Dai, Q., Guo, B., 2007. Image-based Material Weathering.
5. Iizuka, S., Endo, Y., Kanamori, Y., Mitani, J., 2016. Single Image Weathering via Exemplar Propagation.
6. Du, S., Song, Y., 2023. Multi-exemplar-guided image weathering via texture synthesis.
7. Bellini, R., Kleiman, Y., Cohen-Or, D., 2016. Time-varying weathering in texture space.
8. Ravi Nikhila *et al.*, « SAM 2: Segment Anything in Images and Videos »
9. Reinhard, E., Pouli, T., 2011. Colour Spaces for Colour Transfer
10. Heitz Eric *et al.*, « High-Performance By-Example Noise using a Histogram-Preserving Blending Operator »