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ENTREPRISE ET CONTEXTE DU STAGE

* Les ceuvres historiques, qu’elles soient
peintures, sculptures ou manuscrits,
s’abiment naturellement avec le temps :

* Exposition a la lumiere
* Dégradation du support
* Activité humaine, ...

* Aujourd’hui, il y a des ceuvres partiellement
ou grandement endommageées. Il nous faut
une méthode pour retrouver les détails qui
ont été détériorés ou perdus.

* Lobjectif de ce projet est de proposer une
méthode de restauration pour des fresques
anciennes (peinture réalisée directement
sur un mur ou un plafond).




MODELE D’INTELLIGENCE ARTIFICIELLE — MODELE DE DIFFUSION

* Pour tenter de restaurer ces fresques, une méthode
de restauration basée sur de P’intelligence
artificielle est proposée.

* Plus précisément, notre méthode s’appuie sur les po(xe—1[x)
~ . . @ H H @ _> H
modéles de diffusion.

* Les modeles de diffusion sont des types de modeles
génératifs utilisés en apprentissage

automatique pour créer des données, comme des Figure | : Représentation visuelle du fonctionnement d’un
images ou du son. modele de diffusion

* Lobjectif du modele est de retirer le bruit qui a été
artificiellement ajouté aux données.



MODELE D’INTELLIGENCE ARTIFICIELLE — MODELE DE DIFFUSION

DANS LESPACE LATENT

* Pour étre plus précis, notre solution utilise un
modele de diffusion dans I’espace latent.
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Figure 2 : Représentation visuelle du fonctionnement d’un

* Cette représentation étant tres proche de I'image
modele de diffusion qui utilise 'espace latent.

encodée. Il est alors plus avantageux de travailler sur
cet espace pour réduire le coit computationnel
permettant ainsi d’accélérer les calculs.



MODELE D’INTELLIGENCE ARTIFICIELLE —VISION TRANSFORMER

* Un Vision Transformer est un modele qui apprend
a analyser une image en regardant toutes ses
parties en méme temps, plutét que morceau par

Vision Transformer (ViT) Transformer Encoder

morceau. :
: MLP |
N | :
* Pour réaliser cela, ce modele se base sur le : :
mécanisme d’attention qui permet au modele de Transformer Encoder :
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importantes a observer, et comment elles sont liées
entre elles. Figure 3 : Représentation visuelle d’'un Vision Transformer
* Cela permet a ce modele de construire une 8

compreéhension plus riche et plus précise de ce que
contient I'image.



METHODOLOGIE DU PAPIER DIFFIR

* Pour réaliser ce modele de reconstruction, il a été
décidé de reprendre un modele de reconstruction
existant nommée DiffIR (Efficient Diffusion Model

for Image Restoration).

* Ce modele a été entrainé pour restaurer des
images abimées (floues, basses qualité, incompletes).

* Pour cela, les auteurs dégradent volontairement un
ensemble d’images et entrainent le modele a
générer I'image d’origine.

* Lorsqu’on lui donne une image dégradée (avec un
masque par exemple), il va chercher a reconstruire :
les parties de I'image qui sont perdus ou Originales
endommagées.

Dégradées Reconstruit 9



METHODOLOGIE DU PAPIER DIFFIR

Le pipeline de DiffIR se divise en deux parties distinctes :

Le pré-entrainement : le modele apprend a extraire une représentation latente, appelée Z, a partir
d’images haute qualité, grace a un encodeur appelé CPENs, . Lobjectif du pré-entrainement est donc
d’enseigner au modele ce a quoi ressemble un bon Z lorsque I'on dispose de I'image originale intacte.

'entrainement principal :ici, un modele de diffusion est formé a estimer ce vecteur Z uniquement a
partir de la représentation latente de I'image basse qualité, appelée D, obtenue par un autre encodeur
appelé CPENs,. Pour cela, Z est volontairement bruité, puis le modele apprend a inverser ce bruit en
utilisant 'image dégradée comme condition.



METHODOLOGIE ( SCHEMA DE DIFFIR)
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Figure 4 : Architecture du modele de DiffIR
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DEVELOPPEMENT DE NOTRE METHODE

-
* Lobjectif est daméliorer certaines parties du modele afin d’obtenir de CPEN @J
. , S1 el N il Y
meilleurs résultats. . 2|3 |- |2]|2
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. ,. Denoising Network
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* Modifier le modele de diffusion afin qu’il propose une meilleure
Encodeurs

reconstruction de I'image.

De plus, notre modele sera entrainé sur notre propre jeu de données.
En effet, les modeles pré-entrainés sont généralement formeés sur
des jeux de données génériques qui peuvent ne pas refléter les
caractéristiques particulieres des images que I'on veut utiliser.
’objectif est donc de I'adapter pour I'analyse d’images de

fresques.
Image de fresque



DEVELOPPEMENT DE NOTRE METHODE — UTILISATION DES

TRANSFORMERS

* Pour améliorer ces parties du modele, des Transformers vont étre
utilisés.

* Les encodeurs (CPENg,, CPENs,) seront alors remplacés par des
Vision Transformers, qui vont permettre de fournir la meilleure
représentation latente pour nos images.

* Lobjectif est aussi de reconstruire le modele de diffusion de I'étape
d’entrainement en y incluant ces Transformers, afin qu’il analyse les

vecteurs d’espace latent de maniere efficace.

* Cela permettra d’identifier quelles zones sont les plus

importantes a observer, et comment elles sont liées entre elles.
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Figure 5 : lllustration du mécanisme
d’attention dans les Transformers
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DEVELOPPEMENT DE NOTRE METHODE — UTILISATION DES

TRANSFORMERSCONCEPTION DU MODELE DE DIFFUSION

 [architecture choisie est un U-Net car il
correspond bien au format encodeur-
décodeur d’'un modele de diffusion.

* Des Transformers sont intégrés dans ce
modele de diffusion qui utilisent comme
mécanisme d’attention la cross-attention.

* Ce mécanisme va permettre de faire un lien
entre I'image dégradée et I'image d’origine.

* Le modele indiquera alors la quantité de bruit a
retirer afin d’obtenir la version d’origine.

Transformer Block

Figure 6 : Représentation visuelle de I'architecture
du modele de diffusion proposé



DEVELOPPEMENT DE NOTRE METHODE — FONCTIONS DE PERTE

* Afin que le modéle s’auto-corrige pendant I'entrainement, un ensemble de fonctions de perte a été utilisé.

* Pour le pré-entrainement, les fonctions utilisées sont les suivantes :

e L2 Loss
e TV Loss
 SSIM Loss

Perceptual Loss
La perte totale est définie comme suit :
Total Loss = L2 loss + TV Loss + SSIM Loss + Perceptual Loss

* Dans le cadre de I’entrainement, les fonctions de perte du pré-entrainement sont aussi utilisées en plus d’'une
autre qui est la Diffusion Loss.
* La perte pendant I’entrainement est donc :
Total Loss = L2 loss + TV Loss + SSIM Loss + Perceptual Loss + Dif fusion Loss 15



RESULTATS

* La' Phase de Pré'entra,l\nement est en cours de metrics/train_loss_dirformer 1}[ oo metrics/val_loss_dirformer ]F o
recherche.
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Figure 7 : Courbes de pertes avec seulement une LI loss
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Tentative de restauration avec la fonction de perte LI

Figure 8



RESULTATS

* Apres avoir ajouté les fonctions de perte afin de

complexifier le modele, ces courbes de perte
peuvent étre observées.

* Comme montré sur la Figure ci-dessus, la
courbe de perte commence bien plus.

* Le fait que la courbe commence plus haut est
mieux, mais elle converge beaucoup trop
rapidement vers 10 epochs.
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Figure 9 : Courbes de pertes pendant le préentrainement



RESULTATS

Image Image Image
originale dégradée restaurée

Figure 10 :Tentative de restauration avec I'ensemble des fonctions de perte



CONCLUSION

* Beaucoup de choses sont a faire, il va nous falloir trouver pourquoi la perte stagne tres
rapidement.

* Plusieurs pistes sont envisagées :
* La qualité du jeu de données,
* Le choix des hyperparametres.

* Lorsque le pré-entrainement du modele fonctionnera, il faudra alors tester de réaliser
I’entrainement et vérifier si le modele de diffusion permet alors a DiffIR de fournir des
restaurations recevables.

* |l faudra alors faire évaluer les résultats par des historiens associés au projet.
* Ensuite, il faudra comparer le modele final par rapport a d’autres méthodes de

restaurations qui ont été proposees dans diverses publications, puis proposer des axes
d’améliorations, dans le but d’une future publication.
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